

ANL/MCS-TM-355

Update on Development of Mesh Generation
Algorithms in MeshKit

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-355

Update on Development of Mesh Generation Algorithms in
MeshKit

prepared by
Rajeev Jain
Evan Vanderzee
Vijay Mahadevan
Mathematics and Computer Science Division, Argonne National Laboratory

September 30, 2015

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	

1http://www.sigma.mcs.anl.gov	
	 	 i	 ANL/MCS-‐TM/355	

SUMMARY	

MeshKit uses a graph-based design for coding all its meshing algorithms, which
includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report
highlights the developmental updates of all the algorithms, results and future work. Parallel
versions of algorithms, documentation and performance results are reported. RGG GUI design
was updated to incorporate new features requested by the users; boundary layer generation
and parallel RGG support were added to the GUI. Key contributions to the release, upgrade
and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several
fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit
are under development. Results and current status of automated, open-source and high quality
nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval
matching and multi-sweeper are reported.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	 ii	

TABLE	 OF	 CONTENTS	

Summary ... i	

Table of Contents ... ii	
List of Figures ... iii	

1	 Introduction .. 4	
2	 RGG Enhancements and Reactor Assembly Mesh Generation (AssyMesher) 4	

3	 Computational Geometry Model ... 7	
4	 Open Source Triangle Surface Meshing .. 8	

4.1	 GRUMMP .. 8	
4.2	 NetGen ... 9	

5	 Facet-Based Mesh Reader ... 10	
6	 Multi-Sweeper ... 11	

6.1	 Submapping .. 11	
6.1.1	 Optimal Corner Assignment .. 11	

6.2	 Many-to-many Sweeper ... 12	
6.2.1	 Edge Patch Imprinting ... 13	
6.2.2	 Interior Edge Patch Placement ... 13	

6.3	 Integration of Sweeping Pieces .. 13	
6.4	 Examples .. 13	

7	 Conclusions .. 14	

Acknowledgments .. 15	
References .. 15	

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	

	 iii	 ANL/MCS-‐TM/355	

LIST	 OF	 FIGURES	

Figure 1. User specified digraph for creating reactor assembly mesh with boundary
layers. ... 4	

Figure 2 In stage 1 AssyGen generates a geometry based on input file. In stage 2
AssyMesher reads the geometry and creates the assembly mesh. 5	

Figure 3. (a) CoreGen MeshOp di-graph. (b) Internal nodes created during setup-phase of
CoreGen, shown in box. (c) 2 processor digraph for CoreGen MeshOp. 5	

Figure. 4. User specified di-graph with 3 processors and 4 different mesh operations to
create a reactor core mesh. .. 6	

Figure 5. Runtime and efficiency plots for CoreGen, UMR and IO. ... 6	
Figure 6. Invalid cylindrical pincell mesh due to geometry representation problem in

CGM. ... 7	
Figure 7. User specified digraph for creating reactor assembly mesh with boundary

layers. ... 8	
Figure 8. Right: Car crankshaft in CUBIT. Left: Surface mesh of the crankshaft produced

using MeshKit. These two representations can now be linked directly using the
new FacetBasedMeshReader. .. 11	

Figure 9. Structured grid generation of a surface with a three quarters of circle feature by
submapping through templates: (a)corner assignment by CUBIT 13.2;
(b)structured grid for (a); (c)corner assignment based on templates in this paper;
(d)structured grid for (c) .. 12	

Figure 10. Mesh quality histogram: (a)mesh quality histogram for Figure 1.7(b); (b)mesh
quality histogram for Figure 1.7(d) ... 12	

Figure 11. All-hexahedral mesh generation for grid spacer reactor model: (a) assembly
geometry model; (b) local zoom-in view of assembly model; (c)single part of
grid spacer reactor model; (d)top view for (c); (e)source surface meshes for (c);
(f)all-hex meshes for (c); (g)target surface meshes for (c); (h)cut-view of
interior node distribution inside the grid spacer model; (i)another cut-view of
interior node distribution ... 14	

	 	

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
4	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

1 Introduction	

We describe in this report the progress made over the past year in incorporating new
and state-of-art research algorithms in MeshKit focusing on the major goal of creating nuclear
reactor core models. The focus of development was centered on releasing stable version of
Reactor Geometry (and mesh) Generator (RGG) GUI with support for boundary layers and
parallel reactor core model creation [1]. Considerable efforts were made for development of
SIGMA libraries CGM and MOAB as they constitute the geometry and mesh database for
MeshKit respectively. New models for Westinghouse PWR reactor core was also created in
serial and parallel, details and results of the model are available in our paper [2].

Nuclear reactor assembly mesh generation algorithm requires development of several
key algorithms that must work together to create an automated meshing tool. Integration of
existing triangle meshing packages NetGen and GRUMMP is in-progress. A new facet-mesh
algorithm has been integrated and documented in the doxygen-based documentation
framework of MeshKit. Multi-sweep algorithms were developed and compared with CUBIT,
integration of this algorithm with native quadmesher and interval assignment is in-progress.
Section 2 reports the RGG enhancements, parallel CoreGen and fixes along with development
status of open-source reactor mesh generation tool (AssyMesher). Section 3 lists the
development efforts and new releases of geometry package CGM. Section 4 highlights the
triangle mesher status; Section 5 gives the summary and results of facet-based mesh
generation algorithm. Section 6 briefly describes and shows results for the multi-sweeper
algorithm and finally, Section 7 lists the conclusion and future work.

2 RGG	 Enhancements	 and	 Reactor	 Assembly	 Mesh	 Generation	 (AssyMesher)	

PostBL(Post mesh Boundary Layer) [3] MeshOp (mesh operation), which generates
boundary layer meshes for an already existing mesh model was integrate with RGG GUI
application. Figure 1 shows a di-graph based representation for meshing of reactor assembly,
Stage 1 (AssyGen) and stage 2 (Meshing) of the three stage RGG workflow [4] (third stage is
CoreGen) are shown in Figure 2, where meshing is handled by the AssyMesher MeshOp in
MeshKit. AssyMesher is a essentially a combination of state-of-art (open-source) and native
algorithms in MeshKit with added automation and knowledge of AssyGen geometry. It is
designed to use different meshing algorithms as per the specified MeshKit configuration.
CAMAL [5] library (closed source) is currently used and functional for generation of
hexahedral meshes on AssyGen generated Open-Cascade geometries. Section 4 and Section 6
highlights the development efforts of open-source algorithms that would be serve as graph
node of the AssyMesher MeshOp. Interval assignment algorithms developed in MeshKit
would be tied to all these algorithms along with automatic scheme selection for minimal user
intervention and intelligent sizing specification. Fully open-source AssyMesher MeshOp is
under development.

Figure	 1.	 User	 specified	 digraph	 for	 creating	 reactor	 assembly	 mesh	 with	

boundary	 layers.	

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 5	

ANL/MCS-‐TM/355	

Figure	 2	 In	 stage	 1	 AssyGen	 generates	 a	 geometry	 based	 on	 input	 file.	 In	 stage	 2	 AssyMesher	 reads	

the	 geometry	 and	 creates	 the	 assembly	 mesh.	

All RGG algorithms: AssyGen, AssyMesher and CoreGen adhere to the digraph-based
design in MeshKit. A simple graph constructed by the user for running CoreGen is shown in
Figure 3(a). In the setup traversal phase, CoreGen adds two nodes, “CopyMesh” and
“MergeMesh” (shown in the box, Figure 3(b)), to the graph. In the execute phase, based on a
user specified input file, the assembly meshes are copy/moved and then merged. After
populating the material and boundary conditions for the core model, CoreGen saves the
desired core model. Note that in serial CoreGen, CopyMesh does the copy/move of all the
assemblies forming the reactor core model. Consider the graph for the same reactor-modeling
problem with two processors in Figure 3(c). All the operations—copy/move, merge,
boundary/material conditions, setup, and mesh saving—are parallelized, thereby making
CoreGen MeshOp truly parallel and enabling creation of large reactor models.

(a)

(b)

(c)

Figure	 3.	 (a)	 CoreGen	 MeshOp	 di-‐graph.	 (b)	 Internal	 nodes	 created	 during	 setup-‐phase	 of	 CoreGen,	
shown	 in	 box.	 (c)	 2	 processor	 digraph	 for	 CoreGen	 MeshOp.	

The parallel graph setup mentioned below demonstrates the creation of reactor core
mesh from scratch in one program. In figure 4 four meshing operations (AssyGen, Meshing,
PostBL and CoreGen) specified by the user, all form a part of the graph, when running the
problem on three processors. A text-based input file provides input parameters for AssyGen,

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
6	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

PostBL and CoreGen. Mesh sizes for geometries created by AssyGen are prescribed using a
“sizing function” in the program. The setup phase of CoreGen and Meshing creates more
graph nodes that are not shown here. A barrier is required after creation of boundary layers on
all the assembly meshes, since CoreGen loads all the assembly meshes that form the core
model. Work on open-source AssyGen “Meshing2” or AssyMesher operation is currently in
progress. It is a combination of QuadMesh and ExtrudeMesh operation or a CUBIT mesh
generation task.

Figure.	 4.	 User	 specified	 di-‐graph	 with	 3	 processors	 and	 4	 different	 mesh	 operations	 to	 create	 a	

reactor	 core	 mesh.	

Uniform mesh refinement techniques developed in MOAB [6], were utilized in the
CoreGen program. After the generation of the core mesh in parallel the resulting mesh on
each processor was uniformly refined to levels specified by the user. We studied the
performance of our parallel algorithms and I/O routines for rectangular reactor core models.
In our weak scalability studies, assemblies were generated with approximately 7500 hexes
and subsequently refined two time times resulting in 60K and 480K hexes at each level. The
shared entity resolution algorithm used was a geometric proximity based vertex-merge
algorithm for both core assemblies and after refinement. We obtained good scaling for this
algorithm for upto 1K cores. On the other hand, the parallel IO deteriorated as the number of
processors increase (Figure 5). This work is currently in progress and we are investigating the
results and also performing new runs for hexagonal reactor cores.

Figure	 5.	 Runtime	 and	 efficiency	 plots	 for	 CoreGen,	 UMR	 and	 IO.	 	

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 7	

ANL/MCS-‐TM/355	

3 Computational	 Geometry	 Model	

The geometry modeling engine that MeshKit uses to represent the geometry that it will
mesh is the computational geometry model (CGM). CGM can be built on top of several
different geometry libraries, including the CUBIT library from Sandia National Laboratory,
which requires a license, and the open source OpenCascade (OCC) library. Historically, the
development of CGM and CUBIT were tied together very closely, and CGM works best when
it is built with the CUBIT library. CGM does not work as well when it is built with the
OpenCascade library. However, there is growing interest in having a robust completely open
source build of MeshKit, so work continues to improve the behavior of CGM when it is built
with OpenCascade.

In fiscal year 2015, several lines of software development involving CGM built with
the OpenCascade library hit a roadblock because of a bug in the way CGM reported the
geometric sense of an edge relative to a face and the geometric sense of a face relative to a
solid. These are basic queries that report whether the face is to the left or the right of the edge
and whether the solid is on the same side as the (positive) normal vector to the face or the
opposite side from the normal vector to the face. Figure 6 shows one example of the
improper mesh of a cylinder that could result from this problem in CGM.

Figure	 6.	 Invalid	 cylindrical	 pincell	 mesh	 due	 to	 geometry	 representation	 problem	 in	 CGM.	

\
 The issue of geometric sense is an important one, but can be confusing because there
are a variety of ways to think about it. We resolved the issue for the most common use cases
of CGM. Now the same code that once produced the mesh in the Figure 6 produces the mesh
shown in Figure 7 when it is run with the CGM library built on the OpenCascade library.

Although no specific instances have been identified yet, software developers suspect
that there are some less common use cases where CGM build on top of OCC will report the
geometric sense incorrectly. Use cases that involve merging, imprinting, or virtual geometry
are areas of concern, but the geometric sense reported in these use cases has not yet been
thoroughly tested.

We also continue to keep up to date with the ongoing development of OCC. There
were several changes required as we updated CGM to work with more recently released
versions of the OpenCascade library.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
8	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

There are some challenges faced with CGM. There continue to be areas where CGM
built on top of OCC does not have the same capability that CGM has when built on top of
CUBIT. One of the areas recently discovered is the computation of offset curves. The CUBIT
library and OCC library have some differences in the capability they provide, but there is also
poor integration of OCC’s capability in the CGM software. Another challenge is that the
relationship with the CUBIT library, obtaining newer version of CGM and CUBIT are
becoming more difficult and thus the integration and new releases of CUBIT. Argonne’s
CGM developers do not have proper documentation for the most recent releases and are left
with trying to guess what arguments are supposed to pass into library methods that have
changed.

Some SIGMA software developers have been advocating for significant redesign of
the iGeom interface to CGM. There is also a desire to change CGM to allow having multiple
instances of CGM within the same thread of the same application. Test coverage is currently
quite poor in CGM, and there continue to be memory management and other issues that are
flagged by code analysis tools such as valgrind.

Figure	 7.	 User	 specified	 digraph	 for	 creating	 reactor	 assembly	 mesh	 with	 boundary	 layers.	

4 Open	 Source	 Triangle	 Surface	 Meshing	

MeshKit uses CAMAL as the provider for most of its surface meshing capabilities. It
has not had robust open-source implementations of surface meshing capabilities, and one of
the aims of MeshKit software development this year was to integrate an open-source solution
for triangle surface meshing. The triangle surface mesher might be used as a basis for
quadrilateral surface meshing through combining triangles.

4.1 GRUMMP	

The project named Generation and Refinement of Unstructured, Mixed-element
Meshes in Parallel [7](GRUMMP) seems like a good potential alternative for surface triangle
meshing. The algorithmic approach is based on Delaunay refinement rather than the
advancing front technique. One challenge to using GRUMMP is that the license is not yet
completely open source. In a telephone conversation, Carl Ollivier-Gooch seemed forward to

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 9	

ANL/MCS-‐TM/355	

open up the GRUMMP license so that GRUMMP could be used as an open-source surface
triangle mesher, but at the moment the license is still not completely open source.

GRUMMP was originally designed to use the iGeom interface and at one time
interacted well with CGM. The release version that is currently provided, however, has not
been updated to work with the most recent version of CGM. There was some work done on a
nonpublic release of GRUMMP to update it to work with CGM 13.1.

Future work could include further updating that version of GRUMMP to work with
later releases of CGM and attempting to integrate GRUMMP into MeshKit.

Another possible avenue for open-source surface triangle meshing would be to provide
a new implementation of triangle surface meshing in MeshKit. One possible avenue would be
to base that implementation on the advancing front algorithm that is used in NetGen.

4.2 NetGen	

The first effort on the open-source triangle surface meshing front was to implement
the advancing front triangle surface meshing capability that the NetGen package offers. After
making some modifications to the source code of release version 5.2 of NetGen, we were able
to build a prototype capability in MeshKit that integrated NetGen’s triangle surface meshing
capability. However, as discussed in the rest of this section, there were many issues with the
integration of NetGen, and it seems that there would not be a satisfactory way to implement
NetGen into MeshKit at this time using the interface provided by NetGen. The issues with
integrating NetGen include the following.

• NetGen could not be integrated successfully without modifications to the source code
by Argonne.

• NetGen needed to read the geometry from file and could not communicate directly
with CGM’s geometry model that was already in memory.

• NetGen required control over meshing the edges of the surfaces it would mesh.

• NetGen did not provide an interface for specifying a subset of the surfaces to mesh. It
always meshed all surfaces of the geometry read from file.

• CGM does not provide a way to save to file a subset of its geometric surfaces and does
not provide a means to spin off a second instance, which might otherwise be used to
contain copies of a subset of the geometry from the primary instance of CGM and thus
work around saving a subset of its geometric surfaces.

The face that NetGen source code required modification by Argonne does not make it
impossible to integrate NetGen, but it would require Argonne to distribute its own modified
version of NetGen, which is not desirable.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
10	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

Since NetGen had to read the geometry from file, it would not have been efficient to
use NetGen. Every time NetGen was required to mesh a surface, that surface would have to
be written to disk by MeshKit and read from disk by NetGen. Writing to disk is often rather
time-consuming and is makes things more complicated in a high-performance computing
setting. It does not seem like a good solution when communication at the geometry layer
should be possible.

It was not possible to add vertices along edges when communicating with NetGen for
NetGen’s OCC geometry triangle surface meshing. This meant that NetGen needed to mesh
its own edges. This was a problem for multiple reasons. One is that MeshKit had less control
over how the edges were meshed. Another is that MeshKit could not integrate NetGen
naturally into its graph-based paradigm, which separates the edge meshing from the surface
meshing and allows the user to select any desired algorithm for meshing the edges.

Since the OCC triangle meshing capability of NetGen always meshed all of the edges
and surfaces of the geometry it read, the only way to get NetGen to mesh a subset of the faces
of the full geometric model was to provide a geometry file that contained only a portion of the
full geometric model. Although it would be possible to implement this capability in CGM,
CGM – and in particular the iGeom interface to CGM that is the only interface to CGM used
by MeshKit – does not currently provide a way to export a geometry file that contains only a
portion of the full geometry model.

The prototype implementation of NetGen surface meshing provided a way to mesh all
edges and all surfaces of a geometric model with NetGen, but it seemed that it would require
a significant amount of effort and modification to the iGeom interface, which is supposed to
be an interface shared by multiple software vendors, to get to the point where MeshKit could
mesh only a subset of the surfaces of a geometric model. At that point, the solution would still
have been less than desirable for the other reasons discussed here, so further work on
integrating NetGen was suspended.

5 Facet-‐Based	 Mesh	 Reader	

When built with iGeom support, MeshKit now has the ability to create surface meshes
using the graphics faceting of iGeom's underlying CAD engine. The ability to generate such
meshes in MOAB has existed for some time, but the addition of this capability in MeshKit
allows one to couple these surface meshes to the underlying geometry entities via MeshKit's
mapping of the two via ModelEnts. This allows for creation and surface meshing of geometry
in one package. Another advantage of this meshing operation is the possibility of a fully open
source workflow in MeshKit algorithms for surface meshing and analysis if building iGeom
using OCC, for example.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 11	

ANL/MCS-‐TM/355	

	
Figure	 8.	 Right:	 Car	 crankshaft	 in	 CUBIT.	 Left:	 Surface	 mesh	 of	 the	 crankshaft	 produced	 using	

MeshKit.	 These	 two	 representations	 can	 now	 be	 linked	 directly	 using	 the	 new	
FacetBasedMeshReader.	

6 Multi-‐Sweeper	

A multi-sweeper consists of several parts, that is, source surface mesh generation,
target surface mesh generation, linking surface mesh generation (by submapping) and interior
node interpolation inside volumes. A brief overview of the algorithms with some results are
given in this section, very detailed results and algorithms are given in a PhD thesis document
[8]

6.1 Submapping	

Submapping is a meshing tool for generating structured meshes on non 4-sided
surfaces and non 6-sided volumes. An important part of submapping is to assign corners in
the map to vertices bounding surfaces or edges bounding volumes. TFI mapping MeshOp in
MeshKit has been implemented in MeshKit for this purpose.

6.1.1 Optimal	 Corner	 Assignment	

Submapped surfaces and volume require that corner or edge types bounding a surface
or volume sum to four or six, respectively. Templates are used to identify surface submapped
corners for a variety of common feature types, and an optimization approach is used to
guarantee satisfaction of the submapping constraints (sum = 4 - 4g) for submapped surfaces (g
is the number of holes). This approach not only works well in the presence of features, but can
drastically reduce the user interaction required to set up and mesh models with many
features.Vertex type adjustment based on LP.

For the example below, users specify the mesh element size and the algorithm will
classify vertices automatically. If there is a multi-connected geometry, it should be virtually
decomposed or a path connecting the outmost boundary and interior boundaries should be
computed so that the consistent edge parameterization between the outmost boundary and

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
12	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

internal holes can be generated. Note that all the bounding surfaces in all the examples shown
below are meshed with structured quadrilateral meshes by the TFI mapping MeshOp.

Figure	 9.	 Structured	 grid	 generation	 of	 a	 surface	 with	 a	 three	 quarters	 of	 circle	 feature	 by	

submapping	 through	 templates:	 (a)corner	 assignment	 by	 CUBIT	 13.2;	 (b)structured	 grid	 for	 (a);	
(c)corner	 assignment	 based	 on	 templates	 in	 this	 paper;	 (d)structured	 grid	 for	 (c)	

Figure	 10.	 Mesh	 quality	 histogram:	 (a)mesh	 quality	 histogram	 for	 Figure	 1.7(b);	 (b)mesh	 quality	

histogram	 for	 Figure	 1.7(d)	

The first example in Figure 9 shows a surface with a three-quarters round feature,
which makes it difficult to generate a valid corner assignment for submapping. CUBIT 13.2
assigns corners for surface vertices as Figure 9(a) and the resulting structured quadrilateral
mesh is shown in Figure 9(b). From Figure 9(b) and Figure 10(a), poor mesh quality is
produced by submapping due to the lack of an optimal corner assignment. By applying
templates described in this paper, two new vertices are virtually inserted and surface vertices
are classified as Figure 1.7(c). The corresponding structured quadrilateral mesh is shown in
Figure 9(d) with good mesh quality, which is illustrated in Figure 10(b).

6.2 Many-‐to-‐many	 Sweeper	

The 1-1 sweeping is a special case of multi-sweeping which includes M-1 and M-N
sweeping. Unlike 1-1 sweeping where the source and target surface has the same topology
and they are directly connected by the linking surfaces, M-N sweeping is characterized by M
sources and N targets, which generally have different topologies. The key problem during
multi-sweeping is to resolve curves on the source and target surfaces, combined with the
resulting source and target surface patches needing to match: more specifically, multi-
sweeping requires to solve which source surface or area of a specific source surface will be
swept onto a specific target surface or a specific area of a target surface. This is due to the
inherent characteristics that each mesh face element on the source surfaces should match only
one mesh face element on the target surfaces. This subsequently results in that the interval
assignment problem for edges on the source and target surfaces should be solved.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 13	

ANL/MCS-‐TM/355	

6.2.1 Edge	 Patch	 Imprinting	

A new edge patch imprinting algorithm for multi-sweeping problems has been
developed in this work: inputs are the source surfaces, target surfaces and linking surfaces
with their parametric spaces; outputs are a list of source and target surface patches with each s
surface patch matching an exactly t surface patch. After imprinting, curves and vertices on the
target surfaces with source surfaces are resolved by embedding them on the source surface
meshes and vice versa.

6.2.2 Interior	 Edge	 Patch	 Placement	

Once the bounding edge patches have already propagated to the next sweeping level
along the linking surfaces, their enclosed interior edge patches must be propagated to next
sweeping level so that curves on the s/t surfaces can be resolved. As matter of fact, those
edges on the source and target surfaces must be reasonably placed and imprinted on surfaces
so that there are no distortions or degenerated elements when sweeping the surface meshes
through volumes. Detailed algorithm and theory can be found in [8]

6.3 Integration	 of	 Sweeping	 Pieces	

Integration of Jaal quadmesher with details of our multi-sweeping algorithm where
there are five main steps for swept volume meshes will be incorporated into MeshKit. The
sweeping method in this work starts with an input volume without any mesh but with the
identified source and target surfaces. Integration of the final version multi-sweeper with Jaal
and the rest of MeshKit is currently in-progress.

6.4 Examples	

The numerical simulations such as heat transfer (predictions of peak subassembly
temperature) and CFD are needed to assess a designed reactor. One of the typical example is
the grid spacer reactor model shown in Figure 11(a) and Figure 11(b). Generally, the swept
volume meshes are preferred for the flow simulation.

The only other feasible method for generating the swept volume meshes for the grid
spacer model is to partition the geometry until all the decomposed pieces are 1-1 sweepable.
However, there are some shortcomings for the volume decomposition method: generally it is
difficult to generate the internal surfaces which are used to guide the volume decomposition;
meanwhile, interior nodes are placed separately (logically or physically) in each decomposed
subvolumes and poor mesh quality may be produced inside volume. Those disadvantages
become very obvious when there is a model with complicated internal structures such as the
grid spacer model in Figure 11(b) where the blind twisted blade-like holes are located inside
the geometry. A closer look can be taken at Figure 11(c) and Figure 11(d). Therefore, it
requires a lot of experiences and takes a lot of efforts to decompose the grid spacer model in a
reasonable way so that the acceptable mesh quality of the swept volume meshes can be
achieved.

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
14	 	 	 	 September	 30,	 2015	

ANL/MCS-‐TM/355	

Figure	 11.	 All-‐hexahedral	 mesh	 generation	 for	 grid	 spacer	 reactor	 model:	 (a)	 assembly	 geometry	
model;	 (b)	 local	 zoom-‐in	 view	 of	 assembly	 model;	 (c)single	 part	 of	 grid	 spacer	 reactor	 model;	
(d)top	 view	 for	 (c);	 (e)source	 surface	 meshes	 for	 (c);	 (f)all-‐hex	 meshes	 for	 (c);	 (g)target	 surface	
meshes	 for	 (c);	 (h)cut-‐view	 of	 interior	 node	 distribution	 inside	 the	 grid	 spacer	 model;	 (i)another	

cut-‐view	 of	 interior	 node	 distribution	

The grid spacer model shown in Figure 11(c) is a M-1 sweeping problem where the
most difficult part is to locate interior nodes inside the swept volume meshes constrained the
bounding surfaces. Instead of using the volume decomposition, our approach uses the edge
patch imprinting and generate the target surface meshes as Figure 11(g) which are mapped
from the source surface meshes in Figure 11(e). The interior nodes are placed by mapping
those interior nodes from the idealized model to the physical model where interior nodes in
the idealized model are simply placed based on affine transformation. The resulting interior
node distribution is shown in Figure 11(h) and Figure 11(i).

7 Conclusions	 	

MeshKit v1.3 was released with new algorithms for uniform mesh refinement with
CoreGen. Numerous enhancements and fixes to RGG algorithms and graph-based design
were made to MeshKit. Significant effort was directed towards maintain and upgrading the

Update	 on	 Development	 of	 Mesh	 Generation	 Algorithms	 in	 MeshKit	
Rajeev	 Jain,	 Evan	 Vanderzee	 and	 Vijay	 Mahadevan	 	 15	

ANL/MCS-‐TM/355	

CGM version. Development of AssyMesher, which requires an open-source triangle meshing
algorithm in progress. At present, a prototype of AssyMesher is available that work with
CAMAL (closed source) triangle meshing library.

Collaboration with Kitware continues as we complement each other on development
of GUI and algorithms in MeshKit and SIGMA tools. Successful development tie-up has led
to development as other useful GUI products such as CMB for CGM and CMB for general
algorithms in MeshKit. The capability to load MOAB meshes into Paraview tool by Kitware
was also enhanced, along with CMake-based build for all SIGMA libraries.

Acknowledgments	

We thank the SIGMA group at Argonne, who maintain the libraries required by
MeshKit and Kitware Inc. for collaborating on the development of RGG GUI application.
This material was based on work supported in part by the U.S. Department of Energy, Office
of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program
and by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research Program and by the U.S. Department of Energy’s Scientific Discovery through
Advanced Computing program, under Contract DE-AC02-06CH11357.

References	
1. RGG 2.0 release announcement: http://www.mcs.anl.gov/articles/release-rgg-20-mesh-
toolkit-announced

2. Jain, Rajeev, Mahadevan, Vijay and O’bara, Robert. (2015). Simplifying workflow for
reactor assembly and full-core modeling. Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the
Monte Carlo (MC) Method, Nashville, TN, USA.

3. Jain, Rajeev, and Tautges, T. J. (2014). PostBL: Post-mesh boundary layer generation
tool. In Proceedings of the 22nd International Meshing Roundtable (pp. 445-464).

4. Jain, Rajeev and Tautges, T. J. (2014). NEAMS MeshKit: Nuclear Reactor Mesh
Generation Solutions, Charlotte, North Carolina, Apr 2014.

5. CAMAL - The CUBIT Adaptive Meshing Algorithm Library, Sandia National
Laboratories, Albuquerque.

6. Jain, Rajeev, and Tautges, T. J. (2014). Generating unstructured nuclear reactor core
meshes in parallel. In Proceedings of the 23nd International Meshing Roundtable (pp.
351-363). http://dx.doi.org/10.1016/j.proeng.2014.10.396

7. GRUMMP: http://tetra.mech.ubc.ca/GRUMMP/
8. Cai, S. (2015). Algorithmic Improvements to Sweeping and Multi-Sweeping Volume

Mesh Generation. University of Wisconsin, Madison.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

